翻訳と辞書
Words near each other
・ Pseudischnocampa nigrivena
・ Pseudischnochiton
・ Pseudischnolea kaszabi
・ Pseudisthmiade
・ Pseudlepista
・ Pseudlepista atriceps
・ Pseudlepista atrizona
・ Pseudlepista flavicosta
・ Pseudlepista holoxantha
・ Pseudlithosia
・ Pseudluperina
・ Pseudmelisa
・ Pseudmelisa chalybsa
・ Pseudmelisa demiavis
・ Pseudmelisa rubrosignata
Pseudo algebraically closed field
・ Pseudo amino acid composition
・ Pseudo bit error ratio
・ Pseudo city code
・ Pseudo Echo
・ Pseudo gray platelet syndrome
・ Pseudo Interactive
・ Pseudo Jacobi polynomials
・ Pseudo palladium
・ Pseudo Slang
・ Pseudo Stirling cycle
・ Pseudo-
・ Pseudo-Abdias
・ Pseudo-abelian category
・ Pseudo-Alexios II


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Pseudo algebraically closed field : ウィキペディア英語版
Pseudo algebraically closed field
In mathematics, a field K is pseudo algebraically closed if it satisfies certain properties which hold for any algebraically closed field. The concept was introduced by James Ax in 1967.〔Fried & Jarden (2008) p.218〕
==Formulation==

A field ''K'' is pseudo algebraically closed (usually abbreviated by PAC〔) if one of the following equivalent conditions holds:
*Each absolutely irreducible variety V defined over K has a K-rational point.
*For each absolutely irreducible polynomial f\in K(,T_r,X ) with \frac\not =0 and for each nonzero g\in K(,T_r ) there exists (\textbf,b)\in K^ such that f(\textbf,b)=0 and g(\textbf)\not =0.
*Each absolutely irreducible polynomial f\in K() has infinitely many K-rational points.
*If R is a finitely generated integral domain over K with quotient field which is regular over K, then there exist a homomorphism h:R\to K such that h(a)=a for each a\in K

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Pseudo algebraically closed field」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.